

Multi-Enzyme Cascade in Packed bed Reactors for Sialyllactose Synthesis

<u>Kristin Hölting</u>^{1,2}, Miriam Aßmann¹, Paul Bubenheim², Andreas Liese², Jürgen Kuballa¹

¹GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg ² Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg Corresponding author: <u>Kristin.Hoelting@galab.de</u>

Introduction

Aim: Process optimisation by modelling of progress curves for 3'-sialyllactose (SL) synthesis in a continuous packed bed reactor (PBR).

• SL is a human milk oligosaccharide (HMO) and

Experimental results

AB

Kinetic characterisation:

• Kinetic parameters K_m and v_{max} were determined by non-linear fitting of Michaelis-Menten kinetics to the measured activities (Table 2).

- plays an important role in the growth and development of infants [1].
- Multi-enzyme cascades are often challenging. A model can provide information on the effect of parameters for process optimisation [2].
- Development of resilient biocatalysts and design of a suitable reactor are both present challenges for continuous flow technologies [3].
- Covalent immobilisation of enzymes can increase enzyme stability and lead to robust biocatalysts [4].
- The results of the kinetics and modelling of the first sub-cascade (**Figure 1**, shaded blue) are presented.

Materials & Methods

Immobilisation:

• Aminomethacrylate carriers (**Table 1, Figure 2**) preactivated with glutaraldehyde were used for covalent enzyme immobilisation.

Figure 1. Multi-enzyme cascade for the conversion of GlcNAc, pyruvate, CTP and lactose to SL (GlcNAc: N-acetylglucosamine, ManNAc: N-acetylmannosamin, Neu5Ac: N-acetylneuraminic acid, PP_i: pyrophosphate, P_i: phosphate, CTP: cytidine triphosphate, CMP: cytidine monophosphate).

• The stepwise optimisation of the kinetic constants to fit the kinetic model was carried out in Python using the least squares method as a criterion.

Kinetic model:

- The concentration (c_i) was calculated over the length of the PBR (z) using the Runge-Kutta method in Python according to equation 1. $\frac{\partial c_i}{\partial c_i} = \frac{r_i}{\partial c_i} = \frac{v_i \cdot m_{immo} \cdot t}{v_i \cdot m_{immo} \cdot t}$ (1)
- The concentration dependent activities (v_i) were calculated using Michaelis-Menten equations.
- The residence time (\bar{t}) of 48 min was determined by mass flux analysis.
- The volume of the PBR (V_{PBR}) of 64 mL was calculated using the determined residence time (equation 2).

$$V_{PBR} = \frac{\pi}{4} \cdot D^2 \cdot z \cdot \frac{\bar{t}_{theory}}{\bar{t}_{measured}}$$
(2)

Model validation:

• The change in concentration (c_i, Equation 1) over the PBR length (z, Equation 1) was calculated by the model.

Table 1. Carriers for immobilisation.

Enzyme	Carrier	Particle size/ µm	Pore diameter/ nm
Epimerase	Amino C6 methacrylate (Resindion S.R.L)	200-500	40-60
Lyase	Amino C2 methacrylate (Purolite™)	300-710	60-120

Figure 2. Dimethylamino methacrylate carrier (preactivated with glutaraldehyde).

Kinetic characterisation of immobilised enzymes in a PBR:

A binary pump was used for kinetic characterisation (**Figure 3**). This allowed rapid activity analysis at different substrate concentrations by mixing different substrates.

& E-2: bottles with substrate; E-3 & E-4: Waters Acquity UPLC pump; E-5: mixing chamber; E-6: sample valve; E-7: sample vessel; E-8: capillary loop for substrate tempering; E-9: PBR (Figure 4); E-10: oven; E-11: bottle with product; P-1 bis P-9: length: 3 cm). capillaries).

Figure 3: Experimental setup used to characterise immobilised enzymes in a PBR (E-1 Figure 4. UHPLC column used as PBR (ID: 0.3 cm,

- The model fit was compared to the measured Neu5Ac concentration at the end of the PBR.
- The model can predict the Neu5Ac concentration with only 6% deviation

(Figure 5).

Table 2. Kinetic parameters for immobilised epimerase and lyase in a PBR.

Enzyme	Parameter	Value*	Unit
Epimerase	V _{max,forward}	234 ± 3	U/g
	K _{m,forward}	266 ± 10	mМ
	V _{max,reverse}	797 ± 46	U/g
	K _{m,reverse}	294 ± 45	mМ
	K _{I,pyruvate}	940 ± 107	mМ
_yase	V _{max,forward}	294 ± 22	U/g
	K _{m,ManNAc,forward}	249 ± 64	mМ
	K _{m,pyruvate,forward}	229 ± 11	mМ
	V _{max,reverse}	151 ± 6	U/g
	K _{m,reverse}	205 ± 19	mМ
	K _{I,GlcNAc}	418 ± 40	mМ

* Experimental conditions: \dot{V} = 1.5 ml·min⁻¹, T= 30 °C, 200 mM Tris, pH 8.0, 20 mM MgCl₂, varying substrate concentrations.

Figure 5. Concentration over the length of the PBR for model validation of the coupled reaction with epimerase and lyase (reaction conditions: PBR with 250 mm length and 21 mm ID, 38 g immobilised epimerase, 38 g immobilised lyase, \dot{V} = 1.5 ml·min⁻¹, T= 30 °C, 200 mM Tris, pH 8.0, 1 mM MgCl₂, 236 mM GlcNAc, 427 mM pyruvate, 1 mM ATP, Neu5Ac was quantified by HPLC).

Coupled enzyme cascade:

- A column (25 cm length (z), 2.1 cm ID (D)) was filled with gently mixed 38 g immobilised epimerase (EC 5.1.3.8) and 38 g immobilised lyase (EC 4.1.3.3). **Residence time determination:**
- The residence time was determined by mass flux analysis using 40 mM pyruvate solution. Absorption was measured at 320 nm.
- Signals were converted to residence time density function to calculate the mean value of the distribution.

Conclusion & Outlook

- Kinetics and residence times were determined for epimerase and lyase.
- The kinetic model can predict Neu5Ac concentration produced in a PBR with 6% deviation and can be applied for process otimisation.
- The progress curve modelling approach has been proven to be applicable.
- Further kinetic studies for CMP-Neu5Ac synthase, pyrophosphatase and sialyltransferase will be carried out to extend the model for process optimisation of the whole multi-enzyme cascade.

References: [1]: Bruggencate et al., Functional Role and Mechanisms of Sialyllactose and Other Sialylated Milk Oligosaccharides. Nutrition Reviews 2014, 72, 377–389. [2]: Federsel et al., Recent Trends in Enzyme Immobilization—Concepts for Expanding the Biocatalysis Toolbox. Molecules 2021, 26, 2822. [3]: Bolivar et al., Characterization and Evaluation of Immobilized Enzymes for Applications in Flow Reactors. Curr Opin Green Sustain Chem 2020, 25, 100349. [4]: Hölting et al., Resilient Enzymes through Immobilisation: Stable NDP Polyphosphate Phosphotransferase from Ruegeria Pomeroyi for Nucleotide Regeneration. Catalysts 2024, 14. Acknowledgement: We are grateful for financial support provided by the BMBF (031B1080C (prot P.S.I.) and 031B1370 (NukleoCycling)).